Statistical Machine Translation by Generalized Parsing
نویسندگان
چکیده
Designers of statistical machine translation (SMT) systems have begun to employ tree-structured translation models. Systems involving tree-structured translation models tend to be complex. This article aims to reduce the conceptual complexity of such systems, in order to make them easier to design, implement, debug, use, study, understand, explain, modify, and improve. In service of this goal, the article extends the theory of semiring parsing to arrive at a novel abstract parsing algorithmwith five functional parameters: a logic, a grammar, a semiring, a search strategy, and a termination condition. The article then shows that all the common algorithms that revolve around tree-structured translation models, including hierarchical alignment, inference for parameter estimation, translation, and structured evaluation, can be derived by generalizing two of these parameters — the grammar and the logic. The article culminates with a recipe for using such generalized parsers to train, apply, and evaluate an SMT system that is driven by tree-structured translation models.
منابع مشابه
Algorithms for Syntax-Aware Statistical Machine Translation
All of the non-trivial algorithms that are necessary for building and applying a rudimentary syntax-aware statistical machine translation system are generalized parsers. This paper extends the “translation by parsing” architecture by adding two components that are invariably used by state-of-the-art statistical machine translation systems. First, the paper shows how a generic syntax-aware trans...
متن کاملStatistical Machine Translation by Parsing
In an ordinary syntactic parser, the input is a string, and the grammar ranges over strings. This paper explores generalizations of ordinary parsing algorithms that allow the input to consist of string tuples and/or the grammar to range over string tuples. Such algorithms can infer the synchronous structures hidden in parallel texts. It turns out that these generalized parsers can do most of th...
متن کاملGeneralized Parsers for Machine Translation
Designers of statistical machine translation (SMT) systems have begun to employ treestructured translation models. Systems involving tree-structured translation models tend to be complex. This article aims to reduce the conceptual complexity of such systems, in order to make them easier to design, implement, debug, use, study, understand, explain, modify, and improve. In service of this goal, t...
متن کاملNon-Projective Parsing for Statistical Machine Translation
We describe a novel approach for syntaxbased statistical MT, which builds on a variant of tree adjoining grammar (TAG). Inspired by work in discriminative dependency parsing, the key idea in our approach is to allow highly flexible reordering operations during parsing, in combination with a discriminative model that can condition on rich features of the sourcelanguage string. Experiments on tra...
متن کاملImproved Word Alignment with Statistics and Linguistic Heuristics
We present a method to align words in a bitext that combines elements of a traditional statistical approach with linguistic knowledge. We demonstrate this approach for Arabic-English, using an alignment lexicon produced by a statistical word aligner, as well as linguistic resources ranging from an English parser to heuristic alignment rules for function words. These linguistic heuristics have b...
متن کامل